Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Vaccines (Basel) ; 10(2)2022 Feb 03.
Article in English | MEDLINE | ID: covidwho-1690150

ABSTRACT

SARS-CoV-2 vaccine production has taken us by storm. We aim to fill in the history of concepts and the work of pioneers and provide a framework of strategies employing structural vaccinology. Cryo-electron microscopy became crucial in providing three-dimensional (3D) structures and creating candidates eliciting T and B cell-mediated immunity. It also determined structural changes in the emerging mutants in order to design new constructs that can be easily, quickly and safely added to the vaccines. The full-length spike (S) protein, the S1 subunit and its receptor binding domain (RBD) of the virus are the best candidates. The vaccine development to cease this COVID-19 pandemic sets a milestone for the pan-coronavirus vaccine's designing and manufacturing. By employing structural vaccinology, we propose that the mRNA and the protein sequences of the currently approved vaccines should be modified rapidly to keep up with the more infectious new variants.

2.
EMBO J ; 40(5): e105912, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-962496

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which may result in acute respiratory distress syndrome (ARDS), multiorgan failure, and death. The alveolar epithelium is a major target of the virus, but representative models to study virus host interactions in more detail are currently lacking. Here, we describe a human 2D air-liquid interface culture system which was characterized by confocal and electron microscopy and single-cell mRNA expression analysis. In this model, alveolar cells, but also basal cells and rare neuroendocrine cells, are grown from 3D self-renewing fetal lung bud tip organoids. These cultures were readily infected by SARS-CoV-2 with mainly surfactant protein C-positive alveolar type II-like cells being targeted. Consequently, significant viral titers were detected and mRNA expression analysis revealed induction of type I/III interferon response program. Treatment of these cultures with a low dose of interferon lambda 1 reduced viral replication. Hence, these cultures represent an experimental model for SARS-CoV-2 infection and can be applied for drug screens.


Subject(s)
Alveolar Epithelial Cells/metabolism , COVID-19/metabolism , Models, Biological , Organoids/metabolism , SARS-CoV-2/physiology , Virus Replication , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , COVID-19/virology , Chlorocebus aethiops , Gene Expression Regulation , Humans , Interferon Type I/biosynthesis , Interferons/biosynthesis , Organoids/pathology , Organoids/virology , Vero Cells , Interferon Lambda
3.
Science ; 369(6499): 50-54, 2020 07 03.
Article in English | MEDLINE | ID: covidwho-154670

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause coronavirus disease 2019 (COVID-19), an influenza-like disease that is primarily thought to infect the lungs with transmission through the respiratory route. However, clinical evidence suggests that the intestine may present another viral target organ. Indeed, the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) is highly expressed on differentiated enterocytes. In human small intestinal organoids (hSIOs), enterocytes were readily infected by SARS-CoV and SARS-CoV-2, as demonstrated by confocal and electron microscopy. Enterocytes produced infectious viral particles, whereas messenger RNA expression analysis of hSIOs revealed induction of a generic viral response program. Therefore, the intestinal epithelium supports SARS-CoV-2 replication, and hSIOs serve as an experimental model for coronavirus infection and biology.


Subject(s)
Betacoronavirus/physiology , Enterocytes/virology , Ileum/virology , Virus Replication , Angiotensin-Converting Enzyme 2 , Betacoronavirus/ultrastructure , Cell Culture Techniques , Cell Differentiation , Cell Lineage , Cell Proliferation , Culture Media , Enterocytes/metabolism , Enterocytes/ultrastructure , Gene Expression , Humans , Ileum/metabolism , Ileum/ultrastructure , Lung/virology , Male , Organoids , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , Respiratory Mucosa/virology , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL